11 Exploring the Decision Forest: An Empirical Investigation of Occam’s Razor in Decision Tree Induction

Patrick M. Murphy and Michael J. Pazzani

11.1 Introduction

The top-down induction of decision trees is an approach to machine learning that has been used on a variety of real world tasks. Decision trees are well-suited for such tasks since they scale fairly well with the number of training examples and the number of features, and can represent complex concepts in a representation that is fairly easy for people to understand.

Decision tree induction algorithms (Breiman, Friedman, Olshen, & Stone, 1984; Quinlan, 1986; Fayyad & Irani, 1992) typically operate by choosing a feature that partitions the training data according to some evaluation function (e.g., the purity of the resulting partitions). Partitions are then further partitioned recursively until some stopping criterion is reached (e.g., the partitions contain training examples of a single class). Nearly all decision tree induction algorithms create a single decision tree based upon local information of how well a feature partitions the training data. However, this decision tree is only one of a set of decision trees consistent with the training data. In this paper, we experimentally examine the properties of the set of consistent decision trees. We will call the set of decision trees that are consistent with the training data a "decision forest."

Our experiments were run on several artificial concepts for which we know the correct answer and two naturally occurring databases from real world tasks available from the UCI Machine Learning Repository (Murphy & Aha, 1994) in which the correct answer is not known. The goal of the experiments were to gain insight into how factors such as the size of a consistent decision tree are related to the error rate on classifying unseen test instances. Decision tree learners, as well as most other learners, attempt to produce the smallest consistent hypothesis.\(^1\) Occam’s razor is often used to justify this bias. Here, we experimentally evaluate this bias towards simplicity by investigating the relationship between the size of a consistent decision tree and its accuracy. If the average error of decision trees with \(N\) test nodes is less than

\(^1\)We say “attempt to produce the smallest consistent hypothesis” because most systems use some form of limited look-ahead or greedy search. As a result, the smallest consistent tree is rarely found.
the average error of decision trees of size M (for $M > N$), an appropriate bias for a learner attempting to minimize average error would be to return the smallest decision tree it can find within its resource constraints.

In this paper, we restrict our attention to decision trees that are consistent with the training data and ignore issues such as pruning which trade off consistency with the training data and the simplicity of the hypothesis. For the purposes of this paper, a consistent decision tree is one that correctly classifies every training example. We also place two additional constraints on decision trees. First, no discriminator can pass all instances down a single branch. This insures that the test made by the decision tree partitions the training data. Second, if all of the training instances at a node are of the same class, no additional discriminations are made. In this case, a leaf is formed with class label specified by the class of the instances at the leaf. These two constraints are added to insure that the decision trees analyzed in the experiments correspond to those that could be formed by top down decision tree induction algorithms. In this paper, we will not investigate problems that have continuous-valued features or missing feature values.

In section 11.2 (and appendix 11A), we will report on some initial exploratory experiments in which the smallest consistent decision trees tend to be less accurate than the average accuracy of those slightly larger. Section 11.3 provides results of additional experiments that address this issue. Section 11.4 relates this work to previous empirical and theoretical research.

11.2 Initial Experiments

We will investigate the relationship between various tree characteristics and error. In particular, we will look at node cardinality (i.e., the number of internal nodes in a tree) and leaf cardinality (i.e., the total number of leaves in a tree).

It should be noted that the choice of problems is severely constrained by the computational complexity of the task. The number of trees of any node cardinality that might be generated is $O(d^c)$ where d is the number of discriminators and c is the node cardinality. This complexity precludes the use of problems with many features or any continuous-valued features.\(^3\)

\(^2\)The artificial and natural problems we study here have consistent training sets.

\(^3\)Most decision tree learners, produce numerous binary features from each continuously valued feature.
The average error of 100 trials as a function of node cardinality and the number of trials for each node cardinality.

The first experiment considered learning from training data in which there are 5 boolean features. The concept is $XYZ \lor AB$. This concept was chosen because it is of moderate complexity, requiring a decision tree with at least 8 nodes to represent correctly. By comparison, given 5 boolean features, the smallest concept (e.g., True) requires 0 test nodes and the largest (e.g., parity) requires 31.

We ran 100 trials, creating a training set by randomly choosing without replacement 20 of the 32 possible training examples and using the remaining 12 examples as the test set. For each trial, every consistent decision tree was created, and we computed the average error rate made by trees with the same node cardinality. Figure 11.1 plots the mean and 98 percent confidence interval of these average errors as a function of the node cardinality. Figure 11.1 also plots the number of trials on which at least one decision tree of a given node cardinality is consistent with the training data.

From node cardinality 7 to node cardinality 16, there is a monotonic increase in error with increasing node cardinality. For the range from 2 to 3 nodes, the error is varied; however there is little evidence supporting these error values because they are based on only 2 and 1 trials, respectively. For the range of node cardinalities between 4 and 7, average error is definitely not a monotonically increasing function of node cardinality. As seen in this curve, 5 node trees are on the average more accurate than 4 node trees, and 7 node trees are on the average more accurate than trees with 6 nodes. This last result is somewhat surprising since one gets the impression from reading
the machine learning literature (Muggleton, Srinivasan, & Bain, 1992) that the smaller hypothesis (i.e., the one that provides the most compression of the data, Rissanen, 1978) is likely to be more accurate. We will explore this issue in further detail in section 11.3. Appendix 11A presents data showing that this result is not unique to this particular concept. A final, interesting finding that we will not explore further in this paper is that for very large node cardinalities, error begins to decrease as the node cardinality increases.

Table 11.1 lists the average number of consistent trees for each node cardinality and the average number of correct trees (i.e., those trees consistent with the training data that make no errors on the unseen test examples). There are no correct trees with fewer than 8 nodes, since at least 8 nodes are required to represent this concept. Clearly, since there are many trees consistent with the training data, a learner needs some policy to decide which tree to return.

11.3 Further Experimentation

For most of the problems studied, we found that on average, the smallest decision trees consistent with the training data had more error on unseen examples than slightly larger trees. In this section we report additional experiments which show that this result is not an artifact of our experimental methodology.

11.3.1 Representative Train/Test Partitions

One possible explanation for the finding of the previous section is that the smaller decision trees are formed from unrepresentative samples. For example, there are 11 positive and 21 negative examples of the concept $XY Z \lor AB$. If all or most of the examples in the training set are negative, a very small tree may be learned which would probably do very poorly on the mostly positive test set. To insure that the results are not caused by unrepresentative training sets, we eliminated all training data that was not reasonably representative. In particular, because there is a $\frac{11}{32}$ probability that a training instance is positive, a representative training set of size 20 can be expected to have about 7 positive instances. Since one standard deviation is $\sqrt{20 \times \frac{11}{32} \times (1 - \frac{11}{32})}$, we eliminated from analysis those training sets with greater than 8 or fewer than 5 positive instances. Similarly, there is a 0.5
Exploring the Decision Forest

Table 11.1
The average number of trees consistent with 20 training examples of the $XYZ \lor AB$ concept.

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Number of Consistent Trees</th>
<th>Number of Correct Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>4.0</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>3.3</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>12.3</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>27.6</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>1.17.1</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>3.77.0</td>
<td>17.8</td>
</tr>
<tr>
<td>9</td>
<td>879.4</td>
<td>37.8</td>
</tr>
<tr>
<td>10</td>
<td>1799.9</td>
<td>50.2</td>
</tr>
<tr>
<td>11</td>
<td>3.097.8</td>
<td>41.6</td>
</tr>
<tr>
<td>12</td>
<td>4.383.0</td>
<td>95.4</td>
</tr>
<tr>
<td>13</td>
<td>5.068.9</td>
<td>66.6</td>
</tr>
<tr>
<td>14</td>
<td>4.828.3</td>
<td>37.7</td>
</tr>
<tr>
<td>15</td>
<td>3.631.5</td>
<td>31.3</td>
</tr>
<tr>
<td>16</td>
<td>1.910.6</td>
<td>14.8</td>
</tr>
<tr>
<td>17</td>
<td>854.4</td>
<td>4.0</td>
</tr>
<tr>
<td>18</td>
<td>3.08.6</td>
<td>3.6</td>
</tr>
<tr>
<td>19</td>
<td>1.13.8</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Probability that each binary feature takes on a true value, so we eliminated from analysis any training data which has any feature that is true in greater than 13 or fewer than 7 instances. Figure 11.2 is based on the 69 of the 100 trials (reported in the previous section) of the $XYZ \lor AB$ concept that met this representative test. Notice that the two trials that formed the only 2 and 3 node trees were removed. Even when only the more representative training sets are considered, the average error of trees of size 4 is greater than the average error of size 5 trees.

By regrouping the results of 100 trials for the $XYZ \lor AB$ concept so that trials with the same minimum-sized trees are grouped together, a set of five curves, each associated with a subgroup, was formed (figure 11.3). The

\[\text{No train/test partitions generated minimum-sized trees with 1, 3 or 8 nodes}\]
Figure 11.2
Error rate of consistent trees from representative training sets as a function of node cardinality.

Figure 11.3
Error as a function of node cardinality for the $XYZ \lor AB$ concept when first grouped by minimum-sized trees built.

The intent of the grouping is to allow us to determine whether the minimum-sized trees for any given trial are on average more accurate than larger trees.

Note that in figure 11.3, for most minimum tree sizes, error is not a monotonically increasing function of node cardinality. Furthermore, the average error of the smallest trees found is not the most accurate when the smallest tree has 4 or 6 nodes. In addition, regardless of the size of the smallest tree found, the average accuracy of trees of size 8 (the size of the smallest correct tree) rarely has the minimum average error.
Another interesting finding becomes apparent with this way of viewing the data: the average error rates of trees for training sets that allow creation of smaller consistent trees tends to be higher than for those training sets that can only form larger trees. For example, the error rate for those training sets whose minimum-sized trees have 4 nodes is higher than the error rate on trials whose minimum-sized trees have 7 nodes.

The definition of representative that we used earlier in this section used global characteristics of the training data to determine representativeness. Here, we consider a more detailed view of representativeness that takes the structure of the correct concept into account. It is unreasonable to expect a decision tree learner to learn an accurate concept if there are no examples that correspond to some of the leaves of some correct decision tree. To generate training data for the next experiment, we first randomly selected one of the 72 trees with 8 nodes that is consistent with all the data. Next, for each leaf of the tree, we randomly selected two examples (if possible) to include in the training set. If a leaf only had one example, that example was included in the training set. Finally, we randomly selected from the remaining examples so that there were 20 training examples and 12 test examples. We had anticipated that with representative training sets formed in this manner, very small consistent trees would be rare and perhaps the error rate would monotonically increase with node cardinality. However, the results of 100 trials, as displayed in figure 11.4, indicate the same general
pattern as before. In particular, the average error of trees with 7 nodes is substantially less than the average error of those with 6 nodes. Another experiment with one randomly selected example per leaf had similar results.

11.3.2 Training Set Size and Concept Complexity

The minimum-sized decision tree for the concept $XY \lor Z \lor AB$ has 8 tests and 9 leaves. Since the correct tree does not provide much compression of a set of 20 examples used to induce the tree, one might argue that the sample used was too small for this complex a concept. Therefore, we increased the number of training examples to the maximum possible. Figure 11.5 plots the average error of 32 trials in which we formed all decision trees consistent with 31 examples. Each tree was evaluated on the remaining unseen example. Figure 11.5 shows that the smaller trees formed from samples of size 31 have more error than the slightly larger trees. Since the minimum correct decision tree has 8 nodes and the consistent trees classify all 31 training examples correctly, any decision tree with fewer than 8 nodes classifies the test example incorrectly.

To refute further the hypothesis that the results obtained so far were based on using too small a training set for a given concept complexity, we considered two less complex concepts. In particular, we investigated a single

5 The exact amount of compression provided depends upon the particular scheme chosen for encoding the training data. See Quinlan and Rivest (1989) and Wallace and Patrick (1993) for two such schemes.
attribute discrimination, A with four irrelevant features (figure 11.6) and a simple conjunction, AB with three irrelevant features (figure 11.7).

For each concept, 100 trials were run in which 20 examples were used for training and the remaining 12 for testing. For these simpler concepts, though the smallest trees are the most accurate, error again is not a monotonically increasing function of node cardinality.
11.3.3 Training and Testing using the Same Probability Distribution.

In our previous experiments, we used a methodology that is typical in empirical evaluations of machine learning systems: the training data and the test data are disjoint. In contrast, most theoretical work on the PAC model (Valiant, 1984) assumes that the training and test data are generated from the same probability distribution over the examples. For this section, we ran an experiment in which training and test examples were selected with replacement from the same distribution to ensure that our results were not dependent on a particular experimental methodology.

Once again, the target concept was $XYZ \lor AB$. By randomly choosing 31 training examples with replacement from the set of 32 possible instances, on average approximately 20 distinct training examples are selected. Error is estimated by randomly choosing 1000 examples with replacement from the set of possible instances. Figure 11.8 graphs the mean error (averaged over 100 trials) as a function of node cardinality.

This testing methodology produces much smaller values for the proportion of test examples misclassified than the disjoint training and test set methodology because those test examples which also were training examples are always classified correctly. However, the same basic pattern of results is observed. Error is not at a minimum for the smallest decision trees nor at decision trees with 8 nodes (the minimum-sized correct tree).
Error monotonically increases starting at trees with 7 nodes and then begins to decrease again for very large node cardinalities. Note that on some trials, it is possible to build decision trees with up to 21 nodes since some training sets contained 22 distinct examples.

11.3.4 Average Path Length

The information gain metric of ID3 is intended to minimize the number of tests required to classify an example. Figure 11.9 reanalyzes the data from figure 11.1 by graphing average error as a function of average path length for the $XYZ \lor AB$ concept.

The results are similar to those obtained when relating the number of test nodes to the error rate: error is not a monotonically increasing function of average path length. Similar analyses were performed and similar results have been obtained for other concepts which are presented in appendix 11A.

11.4 Analysis

Schaffer (1992, 1993) presents a series of experiments on overfitting avoidance algorithms. Overfitting avoidance algorithms prefer simpler decision trees over more complex ones, even though the simpler decision trees are less accurate on the training data, in hopes that the trees will be more accurate on the test data. Schaffer shows that these overfitting avoidance
algorithms are a form of bias. Rather than uniformly improving performance, the overfitting avoidance algorithms improve performance on some distributions of concepts and worsen performance on other distributions of concepts.

The results of our experiments go a step further than Schaffer’s. We have shown that for some concepts, the preference for simpler decision trees does not result in an increase in predictive accuracy on unseen test data, even when the simple trees are consistent with the training data. Like Schaffer, we do not dispute the theoretical results on Occam’s razor (Blumer, Ehrenfeucht, Haussler, & Warmuth, 1987), minimum description length (Quinlan & Rivest, 1989; Muggleton et al., 1992), or minimizing the number of leaves of a decision tree (Fayyad & Irani, 1990). Rather, we point out that for a variety of reasons, the assumptions behind these theoretical results mean that the results do not apply to the experiments reported here. For example, Blumer et al., (1987) indicate that if one finds a hypothesis in a sufficiently small hypothesis space (and simpler hypotheses are one example of a small hypothesis space) and this hypothesis is consistent with a sufficiently large sample of training data, one can be fairly confident that it will be fairly accurate on unseen data drawn from the same distribution of examples. However, it does not say that on average this hypothesis will be more accurate than other consistent hypotheses not in this small hypothesis space.

Fayyad and Irani (1990) explicitly states that the results on minimizing the number of leaves of decision trees are worst case results and should not be used to make absolute statements concerning improvements in performances. Nonetheless, informal arguments in the paper state: “This may then serve as a basis for provably establishing that one method for inducing decision trees is better than another by proving that one algorithm always produces a tree with a smaller number of leaves, given the same training data.” Furthermore, other informal arguments imply that this result is probabilistic because of the existence of “pathological training sets.” However, as we have shown in figures 11.2 and 11.4 (as well as a reanalysis of the mnist data in appendix 11A), eliminating pathological (i.e., unrepresentative) training sets does not change the qualitative result that on some concepts, the smaller trees are less accurate predictors than slightly larger trees.
11.5 Conclusion

We have reported on a series of experiments in which we generated all decision trees on a variety of artificial concepts and two naturally occurring data sets. We found that for many of the concepts, the consistent decision trees that had a smaller number of nodes were less accurate on unseen data than the slightly larger ones. These results do not contradict existing theoretical results. Rather, they serve to remind us to be cautious when informally using the intuitions derived from theoretical results on problems that are not covered by the theorems or when using intuitions derived from worst-case results to predict average-case performance.

We stress that our results are purely experimental. Like the reader, we too would be pleased if there were theoretical results that indicated, for a given sample of training data, which decision tree is likely to be most accurate. However, it is not clear whether this can be done without knowledge of the distribution of concepts one is likely to encounter (Schaffer, 1994).

We also note that our results may be due to the small size of the training sets relative to the size of the correct tree. We tried to rule out this possibility by using larger training sets (31 of the 32 possible examples) and by testing simpler concepts. For the simpler concepts, the smallest decision trees were the most accurate, but error did not monotonically increase with node cardinality. Since most decision tree learners that greedily build decision trees do not return the smallest decision tree, our results may be of practical interest even for simple concepts. In the future, experiments with more features and more examples could help to answer this question, but considerably more complex problems can never be handled even by future generations of parallel supercomputers. In addition, we note that in our experiments, we did not build decision trees in which a test did not partition the training data. This explains why we found relatively few extremely large decision trees and may explain why very large trees made few errors. To our knowledge, all decision tree algorithms have this constraint. However, the theoretical work on learning does not make use of this information. We could rerun all of our experiments without this constraint, but we would prefer that some future theoretical work take this constraint into account.

Although we have found situations in which the smallest consistent decision tree is not on average the most accurate, we believe that learning algorithms (and people) with no relevant knowledge of the concept and no
information about the distribution of likely concepts should prefer simpler hypotheses. This bias is appropriate for learning simple concepts. For more complex concepts, the opposite bias, preferring the more complex hypotheses, is unlikely to produce an accurate hypothesis (Blumer et al., 1987; Fayyad & Irani, 1990) due to the large number of consistent complex hypotheses. We believe that the only way to learn complex hypotheses reliably is to have some bias (e.g., prior domain knowledge) which favors particular complex hypotheses (e.g., combinations of existing hypotheses learned inductively as in OCCAM, Pazzani, 1990). Indeed, Valiant (1984) advocates a similar position: “If the class of learnable concepts is as severely limited as suggested by our results, then it would follow that the only way of teaching more complex concepts is to build them up from simpler ones.”

11A Experiments on Additional Problems

In this appendix, we provide data on experiments which we ran on additional problems. The experiments show that the basic findings in this paper are not unique to the artificial concept, $XYZ \lor AB$.

11A.1 Mux6

The multiplexor concept we consider, mux6, has a total of 8 binary features. Six features represent the functionality of a multiplexor and 2 features are irrelevant. The minimum sized tree has 7 nodes. This particular concept was chosen because it is difficult for a top-down inductive decision tree learner with limited look ahead to find a small hypothesis (Quinlan, 1993). On each trial, we selected 20 examples randomly and tested on the remaining examples. Since most of the computational cost of building consistent trees is for larger node cardinalities and we are primarily interested in trees with small node cardinalities, we only computed consistent trees with 9 and 10 nodes for 10 trials6 and up to 8 nodes for 340 trials. Figure 11.10 presents the average error as a function of the node cardinality for these trials. This graph again shows that average error does not monotonically increase with node cardinality. Trees of 4 nodes are on the average 4 percent less accurate than trees of 5 nodes.

6The computational cost of constructing trees of 9, 10 (and more) nodes was too great to allow us to run more than 10 trails.
Figure 11.10
Error as a function of node cardinality for the mux6 concept.

Figure 11.11
Error as a function of node cardinality (left) and error as a function of leaf cardinality (right).

11.2 Lenses
The lenses domain has one 3-valued and three binary features, three classes, and 24 instances. Since the lenses domain has one non-binary feature, trees with a range of leaf cardinalities are possible for a particular node cardinality. The minimum-sized tree has 6 nodes and 9 leaves. Separate analyses for leaf and node cardinalities were performed. We used training set sizes of 8, 12, and 18 for this domain, built all consistent trees, and measured the error rate on all unseen examples.

Figure 11.11 (left) shows the error as a function of the node cardinality for the three training set sizes averaged over fifty trials. These curves in-
Figure 11.12
Error as a function of node cardinality for the Shuttle concept.

Indicate that the smallest consistent trees are not always the most accurate. When observing the larger node cardinalities for the training set sizes 12 and 18, error monotonically decreases with increasing node cardinality. Similar statements can be said for the curve in figure 11.11 (right), which relates average error as a function of leaf cardinality.

11A.3 Shuttle Landing

The shuttle landing domain has four binary and two 4-valued features, two classes, and 277 instances. The minimum-sized consistent tree has 7 nodes and 14 leaves. We used training sets of size 20, 50, and 100 for the shuttle domain, generating all consistent decision trees with fewer than 8, 10, and 12 nodes, and measured the error of these trees on all unseen examples. Figure 11.12 presents the error as a function of node cardinality, averaged over 10 trials. For this domain, there is a monotonically increasing relationship between node cardinality and error.

Acknowledgments We thank Ross Quinlan, Geoffrey Hinton, Michael Cameron-Jones, Cullen Schaffer, Dennis Kibler, Steve Hampson, Jason Catlett, Haym Hirsh, Anselm Blumer, Steve Minton, Michael Kearns, Tom Dietterich, Pat Langley, and David Schulenburg for commenting on various aspects of this research. The research reported here was supported in part by NSF infrastructure grant number MIP-9205737, NSF Grant INT-9201842,
AFOSR grant F49620-92-J-0430, and AFOSR AASERT grant F49620-93-1-0569.